Showing 81 – 90 of 100 matching resources

Tapping Zone Model – Tubing

This model estimates the proportion of clear, conductive wood in the tapping zone of an individual tree each year (for 100 years) based on the values input for tree diameter, tapping depth, spout size, number of taps, and dropline length. This is equivalent to the chances of tapping into conductive wood in this tree each year Ð if 80% of the wood in the tapping zone is conductive, you have an 80% chance of hitting conductive wood when you tap that tree. The model can be used to estimate whether various tapping practices are likely to be sustainable. A more complete description of the model and guidelines for its use can be found in the companion technical report “A Model of the Tapping Zone”, which is available on the UVM-PMRC website (http://www.uvm.edu/~pmrc).

Technical Position Paper on Air Injection

The use of air injection technology in the maple industry can be defined as: the forced introduction of air through a series of perforated pipes submerged in the boiling sap in the front and /or back pan of a maple syrup evaporator. Several studies conducted in recent years have investigated aspects of the use of air injection technology in the process of maple syrup production.

Temperature Patterns with an Oil-Fired Evaporator

Knowing the temperature in the evaporator is an essential part to making quality pure maple syrup. This article will discuss observations of temperature in each partition and how the front and back pans temperatures are influenced by the draw off events.

The “Jones Rule of 86” Revisited

The Jones “Rule of 86” was devised in 1946 by C.H. Jones, a scientist and educator at the University of Vermont. The gist of the rule is that ifone divides 86 by the sugar content of sap, you can estimate the amount of sap required to produce a gallon of syrup.

The Goldilocks touch: Overdriving spouts reduces sap yield

One of the more common questions producers have when about tapping maple trees is Òhow deep should spouts be driven in to the taphole?Ó. Unfortunately, there is not a simple answer, since different spouts have different dimensions, variable degrees of taper and steps, and are made of different materials with dissimilar degrees of Òstickiness.Ó Regardless, the importance of driving spouts in to the proper depth is readily apparent: if spouts are driven too shallow there is a risk that spouts can leak vacuum or heave easily during freezes, but if driven too deeply, small cracks may form which cause liquid and vacuum leaks or alternatively, the reduced amount of exposed wood surface area inside the taphole caused by driving spouts in too deeply may reduce sap collection.

Tree Size and Maple Production

There are several important factors that affect the yield of sap from trees during the production season. One relationship that is sometimes overlooked is the one between tree size and yield. In order to develop models of tree size and yield to answer some of these questions, we measured the sap volume and sugar content from approximately fifty individuals along a wide range of sizes during the 2016 and 2017 seasons.

Tree Size Matters

In order to develop models of tree size and yield we measured the sap volume and sugar content from a wide range of tree sizes during the 2016 and 2017 seasons. This article explores the findings.

Tubing Cleaning – Methods Used in the U.S.

A wide variety of cleaning techniques are currently used in the maple industry, including rinsing the system with pressurized air and water, or attempts to sanitize with chemical solutions such as peroxide, bleach, or alcohol. However, the effectiveness of these cleaning techniques in reducing microbial populations and increasing annual sap yield is often questionable.