Showing 41 – 50 of 53 matching resources

Silviculture, and Why it Belongs in a Sugarbush

We are seeing new challenges for our maples and their offspring. Invasive species, climate change, poor forest management, and other factors are all serious threats to the productivity of harvesting maple sugar in the decades to come. However, there are things we can do to protect the tradition of maple sugaring in our regions. Silviculture is our primary tool.

Sugar Maple Ecology and Health: Proceedings of an International Symposium

During the past four decades, declines of sugar maple have occurred throughout its range. Each decline event has been the subject of intense research.The declines were ephemeral, preventing a complete understanding of conditions and causes.The most recent decline in Pennsylvania was the impetus to organize an international symposium on sugar maple ecology and health. Speakers from the United States and Canada were invited to share their research and explore a variety of topics concerning sugar maple history and ecology, recent sugar maple declines, nutrient and beiowground dynamics in northeastern forests, and interactions of forest health with biotic and abiotic stressors. Posters also were contributed. Attending scientists, natural resource professionals, and land managers participated in two days of talks and discussions and a day-long field trip to sugar maple decline research sites in northwestern Pennsylvania and southwestern New York.

Sugar maple growth in relation to nutrition and stress in the northeastern United States

Sugar maple, Acer saccharum, decline disease is incited by multiple disturbance factors when imbalanced calcium (Ca), magnesium (Mg), and manganese (Mn) act as predisposing stressors. Our objective in this study was to determine whether factors affecting sugar maple health also affect growth as estimated by basal area increment (BAI). We used 76 northern hardwood stands in northern Pennsylvania, New York, Vermont, and New Hampshire, USA, and found that sugar maple growth was positively related to foliar concentrations of Ca and Mg and stand level estimates of sugar maple crown health during a high stress period from 1987 to 1996. Foliar nutrient threshold values for Ca, Mg, and Mn were used to analyze long-term BAI trends from 1937 to 1996. Significant (P <= 0.05) nutrient threshold-by-time interactions indicate changing growth in relation to nutrition during this period.

Sugar Maple Health and Management

Most of us understand how to tap trees, gather sap and produce maple syrup. Yet, one of the most important and least thought about tasks of a sugar bush owner is maintaining the health of the sugar maples. To do that effectively, the majority of us can greatly benefit from the help of a professional forester.

Sugar Maple Tree Improvement Program

Maple producers and rural landowners throughout the maple syrup producing regions of the Northeast have expressed interest in acquiring improved sugar maple seedings for future sap production. A sugar maple tree improvement program for high sap concentration began in the 1960s under the direction of the USDA Forest Service.

Sugarbush Management Notebook

A sugarbush is a special type of woodland. Woodlands include a complex mixture of natural processes and attributes such as soil type, elevation, tree species, types of wildlife, history of use, tree age and more. Foresters can help maple producers gain an in-depth understanding of these factors to achieve a healthy and productivity sugarbush, but there are several steps a maple producer can take on their own.

Sugarbush Mapping: Finding information to assist in forest management and planning in the sugarbush

Technological advances by maple equipment manufacturers, continued outreach and education by local, state, federal, and provincial maple organizations, and widespread adoption of new management practices by producers have revolutionized the maple industry over the last 20 years. The design and layout of sap collection systems and advances in vacuum pumps and releasers has resulted in higher per tap sap yields well beyond the old standards. Increased per tap volume has been matched with modern high brix reverse osmosis systems and efficiency gains in evaporators, pushing the economic potential of making maple syrup to new heights. Value-added products, niche marketing and branding, and social media and online platforms, coupled with health conscious and savvy consumers,have altered the retail sales landscape and linked rural maple producers to consumers around the world.

Sugarbush Mapping: What’s in your woods? Measuring density

Looking around your woods youÕll see that there are far more trees on the landscape than you have time to measure. The science of forestry has taught us that similar stands (ones that have the same species composition, size classes, productivity, and management history) do not need to undergo a 100% census to get an accurate picture of what is there. Foresters use sampling methods that inventory stands to get an accurate representation of what is in them and the quality of the resource.

Tapholes in Sugar Maples: What Happens in the Tree

Maple syrup production starts by drilling a taphole in the tree. This process injures the wood, which may become discolored or decayed as a result. If trees are to be tapped, every effort must be made to minimize injury while obtaining the desired amount of sap. Information about tapholes is given here for the benefit of the producer. Some important points discussed are: how trees compartmentalize discolored and decayed wood associated with tapholes, how some tapping procedures lead to cambial dieback around the hole, the problem of overtapping related to increased use of mechanical tappers, and new information on the use of para formaldehyde pills, which can lead to more decay in trees.

Tapping Zone Model – Tubing

This model estimates the proportion of clear, conductive wood in the tapping zone of an individual tree each year (for 100 years) based on the values input for tree diameter, tapping depth, spout size, number of taps, and dropline length. This is equivalent to the chances of tapping into conductive wood in this tree each year Ð if 80% of the wood in the tapping zone is conductive, you have an 80% chance of hitting conductive wood when you tap that tree. The model can be used to estimate whether various tapping practices are likely to be sustainable. A more complete description of the model and guidelines for its use can be found in the companion technical report “A Model of the Tapping Zone”, which is available on the UVM-PMRC website (http://www.uvm.edu/~pmrc).