Showing 1 – 10 of 47 matching resources

2010 Sugaring Season Survey

In mid-April 2010, an invitation to participate in a survey was sent to subscribers of two maple forums. The survey was designed to get some basic information about the operations of the respondents, to describe sanitation practices (changing tubing, spouts, etc.) and to get feedback from users about the Leader Check-valve adapter.

2011 Update of Maple Tubing and Taphole Sanitation Research at Cornell

During the 2011 maple sap season a variety of research trials were conducted at the Arnot Forest of Cornell University and in the woods of a number of cooperators both with vacuum and gravity systems. Research conducted over the last five years has shown that significant increases in sap yield can be obtained by keeping the tap hole from contamination by bacteria and yeast.

2014 -15 Maple Tubing Research

In 2014 and 2015 the focus of the tubing and taphole sanitation research changed dramatically. Tests conducted in 2013 showed that if the spout and drop line were adequately sanitized sap yield comparable to a new spout and drop could be obtained. With the assistance of a grant from the Northeast Sustainable Agriculture Research and Extension program of the USDA and in cooperation with the Proctor Maple Research Center in Vermont, a variety of spout and drop cleaning and replacement options were tested to determine the extent of sap yield changes.

2019 Cornell Maple Program Research on 5/16åÓ Maple Tubing

During the 2019 maple season the Cornell Maple Program conducted replicated trials on 5/16Ó and 3/16Ó tubing looking at a variety of tubing options for taphole sanitation and tapping. This report will focus on the 5/16Ó results.

A Decade of Spout and Tubing Sanitation Research Summarized

More then a decade ago there was a renewed realization that microbial contamination of maple sap collection systems was having a significant detrimental impact on sap yields. Several research studies to investigate ways to improve sap yields from tubing systems were undertaken at both the University of Vermont Proctor Maple Research Center (Underhill, VT) and at the Cornell University Arnot Forest (Van Etten, NY) starting at about the same time and proceeded both as independent and joint projects from 2009-2018. The results of many of these studies have been reported in the past in numerous individual publications and presentations. This article seeks to combine and present this extensive body of work into a single, comprehensive, but concise summary of our results.

Analysis of plastic residues in maple sap and syrup collected from tubing systems sanitized with isopropyl alcohol

A plastic tubing system operated under vacuum is usually used to collect sap from maple trees during spring time to produce maple syrup. This system is commonly sanitized with isopropyl alcohol (IPA) to remove microbial contamination colonizing the system during the sugar season. Questions have been raised whether IPA would contribute to the leaching of plastic residues in maple sap and syrup coming from sanitized systems.

Bacterial Adhesion to Plastic Tubing Walls

The advent of plastic tubing systems to collect sap has eliminated several problems associated with the traditional bucket system. However, plastic tubing systems also present some problems of their own. Sap quality problems arise if the lines sag and the sap lingers within the tubings or the large conduits. In addition, the warming effect of the sun increases the tem perature within the tubing to optimum levels for microbial growth and sap flow may decrease because of “organic buildup” on the internal tubing walls. This buildup is a result of the adhesion of microorganisms to the tubing walls.