Showing 1 – 4 of 4 resources

Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics

Acid deposition induced losses of calcium (Ca) from northeastern forests have had negative effects on forest health for decades, including the mobilization of potentially phytotoxic aluminum (Al) from soils. To evaluate the impact of changes in Ca and Al availability on sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) growth and forest composition following a major ice storm in 1998, we measured xylem annual increment, foliar cation concentrations, American beech root sprouting, and tree mortality at the Hubbard Brook Experimental Forest (Thornton, New Hampshire) in control plots and in plots amended with Ca or Al (treated plots) beginning in 1995.

Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest

Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature sugar maple physiology were evaluated at the Hubbard Brook Experimental Forest (Thornton, NH, USA) to assess remediation (Ca addition) or exacerbation (Al addition) of current acidified conditions. Fine root cation concentrations and membrane integrity, carbon (C) allocation, foliar cation concentrations and antioxidant activity, foliar response to a spring freezing event and reproductive ability (flowering, seed quantity, filled seed and seed germination) were evaluated for dominant sugar maple trees in a replicated plot study.

Associations of calcium and aluminum with the growth and health of sugar maple trees in Vermont

We compared tree growth and crown condition with soil and foliar elemental composition in 14 sugar maple (Acer saccharum Marsh.) stands in VT, USA, to evaluate if deficiencies or imbalances in cation nutrition were associated with growth and health reductions in native stands. The Till Source Model (TSM) was used to select study sites potentially high or low in calcium (Ca) by predicting the relative Ca concentration of soil parent material derived from glacial till. The TSM successfully identified high or low levels of soil Ca (P = 0.031) and foliar Ca (P = 0.011) among stands.

Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest

We surveyed and wounded forest-grown sugar maple (Acer sacchamm Marsh.) trees in a long-term, replicated Ca manipulation study at the Hubbard Brook Experimental Forest in New Hampshire, USA. Plots received applications of Ca (to boost Ca availability above depleted ambient levels) or A1 (to compete with Ca uptake and further reduce Ca availability). We found significantly greater total foliar and membrane-associated Ca in foliage of trees in plots fertilized with Ca when compared with trees from Al-addition and control plots (P = 0.005).