Showing 11 – 20 of 99 resources

Some quick tips to achieve higher sap yield

Increasing the yield of sap from maple trees is the goal of most maple producers. While getting there isn’t a matter of one simple thing, by
following best management practices and paying attention to detail it is possible to increase sap yields, often quite dramatically. Includes links to videos.

Some quick tips to achieve higher sap yield

Increasing the yield of sap from maple trees is the goal of most maple producers. While getting there isnÕt a matter of one simple thing, by following best management practices and paying attention to detail it is possible to increase sap yields, often quite dramatically.

Darkening of Maple Syrup in Uncoated and XL-Coated Plastic Containers

Although several previous studies have examined syrup darkening in different retail containers, packers and producers sometimes question the effectiveness of an oxygen-barrier in reducing the rate of color change. Two studies were performed by the University of Vermont (UVM) Proctor Maple Research Center (PMRC) in 2018 and 2019 to compare the rate of color (LT) change in maple syrup in uncoated and XL-coated retail plastic containers.

Tapholes: Straight or Slanted?

Is there any difference in sap yield when tapping at a slight angle (the historical recommendation) or tapping straight in (the current recommendation)? While there might be other considerations suggesting that tapping straight in is advantageous, from a syrup yield perspective, there is no apparent difference.

Identifying an Effective Defoamer for Certified Organic Maple Production

The combination of potential crop losses from foam-related incidents, reductions in crop value due to off-flavors, and ultimately the many adverse effects of such a large proportion of organic syrup with off-flavors potentially being sold to consumers, underscore the need to identify or develop a certified organic defoamer for maple production that is both more effective at controlling foam than the culinary oils that are currently used, and which results in no off-flavors when used in the quantities necessary to adequately control foam. Thus, the overall objective of this project was to identify a certified organic defoamer that met these criteria.

Sanitation, Clogging, or Both: A Comparison Study of 3/16″ and 5/16″ Maple Tubing

It is well recognized that microbial contamination of tubing systems can result in a substantial loss in sap yield if untreated. Over a decade of research and maple industry experience has produced a range of possible strategies to address sanitation-related issues in 5/16Ó tubing systems (Perkins et. al. 2019). Although rapidly adopted by many maple producers, due to the relatively short time period in which it has been in widespread use, there is far less understanding of sanitation in 3/16Ó tubing systems (Wilmot 2018). To address this knowledge deficit, we conducted a multi-year study at the UVM Proctor Maple Research Center to examine sanitation-related losses in 3/16Ó tubing systems to determine which approach(es) might best mitigate sap losses due to sanitation.

Comparison of 3/16″ and 5/16″ tubing sanitation

Although rapidly adopted by many maple producers, due to the relatively short time period in which it has been in widespread use, there is far less understanding of sanitation in 3/16Ó tubing systems. To address this knowledge deficit, we conducted a multi-year study at the UVM Proctor Maple Research Center to examine sanitation related losses in 3/16Ó tubing systems to determine which approach(es) might best mitigate sap losses due to sanitation.