Showing 1 – 3 of 3 resources

Age, allocation and availability of nonstructural carbon in mature red maple trees

The allocation of nonstructural carbon (NSC) to growth, metabolism and storage remains poorly understood, but is critical for the prediction of stress tolerance and mortality. We used the radiocarbon (14C) Ôbomb spikeÕ as a tracer of substrate and age of carbon in stemwood NSC, CO2 emitted by stems, tree ring cellulose and stump sprouts regenerated followingharvesting in mature red maple trees. We addressed the following questions: which factors influence the age of stemwood NSC?; to what extent is stored vs new NSC used for metabolism and growth?; and, is older, stored NSC available for use?

Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees

Nonstructural carbohydrate reserves support tree metabolism and growth when current photosynthates are insufficient, offering resilience in times of stress. We monitored stemwood nonstructural carbohydrate (starch and sugars) concentrations of the dominant tree species at three sites in the northeastern United States. We estimated the mean age of the starch and sugars in a subset of trees using the radiocarbon (14C) bomb spike. With these data, we then tested different carbon (C) allocation schemes in a process-based model of forest C cycling.

Response of Sugar Maple to Calcium Addition to Northern Hardwood Forest

Watershed budget studies at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, have demonstrated high calcium depletion of soil during the 20th century due, in part, to acid deposition. Over the past 25 years, tree growth (especially for sugar maple) has declined on the experimental watersheds at the HBEF. In October 1999, 0.85 Mg Ca/ha was added to Watershed 1 (W1) at the HBEF in the form of wollastonite (CaSiO3), a treatment that, by summer 2002, had raised the pH in the Oie horizon from 3.8 to 5.0 and, in the Oa horizon, from 3.9 to 4.2. We measured the response of sugar maple to the calcium fertilization treatment on W1.