Showing 31 – 35 of 35 resources

Chemical Safety in Maple Sugaring Operations

This brochure is intended to raise awareness among sugarmakers about hazardous chemicals commonly being used in sugaring operations as well as the need to use these materials safely, in a way which protects personal and food product safety. This brochure will outline 1) the most common types of chemical hazards associated with sugarhouse chemicals, 2) basic guidelines for using chemicals safely, and 3) where to get more detailed information.

Silvics of North America: Hardwoods

Silvics of North America describes the silvical characteristics of about 200 conifers and hardwood trees in the conterminous United States, Alaska, Hawaii, and Puerto Rico. Individual articles were researched and written by knowledgeable Forest Service, university, and cooperating scientists. They were reviewed by their counterparts in research and academia. The project took 10 years to complete. The revised manual retains all of the essential material from the original publication, plus new information accumulated over the past quarter of a century. It promises to serve as a useful reference and teaching tool for researchers, educators, and practicing foresters both within the United States and abroad.

Sugarhouse Design

A guide to designing and constructing an efficient sugarhouse.

A Guide to Sugarbush Stocking

Sugarbush managers have long needed a guide for determining the stocking of their sugar maple stands. The question is: for desirable sugar maple sap production, how many trees per acre are needed? To provide information about stocking, the USDA Forest Service’s sugar maple sap production project at Burlington, Vermont, has made a regionwide study of the relationships between crown diameter and d.b.h. (diameter breast high) of open-grown sugar maple trees (Acer saccharum Marsh.). We found a strong relationship between crown diameter and d.b.h., and converted these data into stocking guides for various stand-size classes. The stocking guide are based on the assumption that trees with full crowns produce the best sap yields.