Showing 1 – 4 of 4 resources

Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics

Acid deposition induced losses of calcium (Ca) from northeastern forests have had negative effects on forest health for decades, including the mobilization of potentially phytotoxic aluminum (Al) from soils. To evaluate the impact of changes in Ca and Al availability on sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) growth and forest composition following a major ice storm in 1998, we measured xylem annual increment, foliar cation concentrations, American beech root sprouting, and tree mortality at the Hubbard Brook Experimental Forest (Thornton, New Hampshire) in control plots and in plots amended with Ca or Al (treated plots) beginning in 1995.

Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest

Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature sugar maple physiology were evaluated at the Hubbard Brook Experimental Forest (Thornton, NH, USA) to assess remediation (Ca addition) or exacerbation (Al addition) of current acidified conditions. Fine root cation concentrations and membrane integrity, carbon (C) allocation, foliar cation concentrations and antioxidant activity, foliar response to a spring freezing event and reproductive ability (flowering, seed quantity, filled seed and seed germination) were evaluated for dominant sugar maple trees in a replicated plot study.

Response of Sugar Maple to Calcium Addition to Northern Hardwood Forest

Watershed budget studies at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, have demonstrated high calcium depletion of soil during the 20th century due, in part, to acid deposition. Over the past 25 years, tree growth (especially for sugar maple) has declined on the experimental watersheds at the HBEF. In October 1999, 0.85 Mg Ca/ha was added to Watershed 1 (W1) at the HBEF in the form of wollastonite (CaSiO3), a treatment that, by summer 2002, had raised the pH in the Oie horizon from 3.8 to 5.0 and, in the Oa horizon, from 3.9 to 4.2. We measured the response of sugar maple to the calcium fertilization treatment on W1.

Carbohydrate reserves in Acer saccharum trees damaged during the January 1998 ice storm in northern New York

To assess the effect of the ice storm of January 1998 on sugar maple (Acer sacchan~m Marsh.) tree health, starch, and soluble sugars in twigs from two damaged sugarbushes (younger: trees 50-100 years old, and older: trees approximately 200 years old) in northern New York were measured throughout the leafless phase (September 1998 – May 1999). Trees severely damaged by the ice storm exhibited signs of recovery during the first growth season (1998), that is, greater numbers of lateral (epicormic) shoots and increased wood production in the current year growth ring of branches at mid-crown, and high concentrations of starch in the twigs at the time of leaf drop.