Showing 31 – 40 of 41 resources

Carbohydrate reserves in Acer saccharum trees damaged during the January 1998 ice storm in northern New York

To assess the effect of the ice storm of January 1998 on sugar maple (Acer sacchan~m Marsh.) tree health, starch, and soluble sugars in twigs from two damaged sugarbushes (younger: trees 50-100 years old, and older: trees approximately 200 years old) in northern New York were measured throughout the leafless phase (September 1998 – May 1999). Trees severely damaged by the ice storm exhibited signs of recovery during the first growth season (1998), that is, greater numbers of lateral (epicormic) shoots and increased wood production in the current year growth ring of branches at mid-crown, and high concentrations of starch in the twigs at the time of leaf drop.

Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (acer saccharum)

Sugar maple (Acer saccharum Marsh.) trees exhibit seasonal patterns of production, accumulation, and utilization of nonstructural carbohydrates that are closely correlated with phenological events and (or) physiological processes. The simultaneous seasonal patterns of both reserve and soluble carbohydrates in the leaves, twigs, branches, and trunks of healthy mature sugar maple trees were characterized. The concentrations of starch and soluble sugars (sucrose, glucose, fructose, xylose, raffinose, and stachyose) were determined.

Radial growth of hardwoods following the 1998 ice storm in New Hampshire and Maine

Ice storms and resulting injury to tree crowns occur frequently En North America, Reaction of land managers to injury caused by the regional ice storm of January 1998 had the potential to accelerate the harvesting of northern hardwoods due to concern about the future loss of wood production by injured trees. To assess the effect of this storm on radial stem growth, increment cores were collected from northern hardwood trees categorized by crown injury classes. For a total of 347 surviving canopy dominant and subdominant trees, a radial growth index was calculated (mean annual increment for 1999-2000 divided by the mean annual increment for 1995-1997).

Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest

We surveyed and wounded forest-grown sugar maple (Acer sacchamm Marsh.) trees in a long-term, replicated Ca manipulation study at the Hubbard Brook Experimental Forest in New Hampshire, USA. Plots received applications of Ca (to boost Ca availability above depleted ambient levels) or A1 (to compete with Ca uptake and further reduce Ca availability). We found significantly greater total foliar and membrane-associated Ca in foliage of trees in plots fertilized with Ca when compared with trees from Al-addition and control plots (P = 0.005).

Cost of Maple Sap Production for Various Size Tubing Operations

Reports sap production costs for small (500 to 1,000 taps), medium (1,000 to 5,000), and large (5,000 to 15,000) maple syrup operations that use plastic tubing with vacuum pumping. The average annual operating cost per tap ranged from $4.64 for a 500-tap sugarbush operation to $1.84 for a sugarbush with 10,000 taps. The weighted average was $2.87 per tap or $11.48 per gallon (assumes four taps required to produce a gallon of syrup). The average annual investment cost for a plastic tubing system ranged from $7.90 for a 500-tap operation to $6.03 for a 10,000-tap system. The average labor time per tap was 4.74 minutes in 1998 compared to 9.60 minutes in 1975. The break-even (zero profit) size for a sugarbush operation was 900, 1,500, and 3,800 taps for a 3.0, 2.5, and 2.0o Brix sap, respectively.

Sugar Maple Ecology and Health: Proceedings of an International Symposium

During the past four decades, declines of sugar maple have occurred throughout its range. Each decline event has been the subject of intense research.The declines were ephemeral, preventing a complete understanding of conditions and causes.The most recent decline in Pennsylvania was the impetus to organize an international symposium on sugar maple ecology and health. Speakers from the United States and Canada were invited to share their research and explore a variety of topics concerning sugar maple history and ecology, recent sugar maple declines, nutrient and beiowground dynamics in northeastern forests, and interactions of forest health with biotic and abiotic stressors. Posters also were contributed. Attending scientists, natural resource professionals, and land managers participated in two days of talks and discussions and a day-long field trip to sugar maple decline research sites in northwestern Pennsylvania and southwestern New York.

Silvics of North America: Hardwoods

Silvics of North America describes the silvical characteristics of about 200 conifers and hardwood trees in the conterminous United States, Alaska, Hawaii, and Puerto Rico. Individual articles were researched and written by knowledgeable Forest Service, university, and cooperating scientists. They were reviewed by their counterparts in research and academia. The project took 10 years to complete. The revised manual retains all of the essential material from the original publication, plus new information accumulated over the past quarter of a century. It promises to serve as a useful reference and teaching tool for researchers, educators, and practicing foresters both within the United States and abroad.

Timing of defoliation and its effect on bud development, starch reserves, and sap sugar concentration in sugar maple

Sapling sugar maple (Acer saccharum Marsh.) trees were defoliated artificially at 10-day intervals beginning May 27 and ending August 5, 1981. Refoliation, terminal bud and shoot development, and xylem starch and sap sugar concentration were observed in defoliated and control trees. All defoliated trees refoliated, but decreasingly with later defoliation. Defoliation caused an acceleration in the rate of primordia initiation in terminal shoot apices. After early season defoliations, the developing buds in the axils of the removed leaves abscissed, but axillary and terminal buds on the refoliated terminal shoots survived through winter. In late season defoliation, most buds of refoliated shoots did not survive and the next year’s growth depended on axillary buds formed prior to defoliation. Thus, when progressing from early to late defoliations, the next year’s shoot growth depended decreasingly on the last-formed and increasingly on the first-formed portions of the previous year’s shoot. Early October starch concentration in xylem decreased with later defoliation and was nearly absent in shoots and roots of trees defoliated in late July. There was not, however, a corresponding decrease in sap sugar concentration. Mortality occurred only in late defoliated trees and was associated with starch depletion.

Tapholes in Sugar Maples: What Happens in the Tree

Maple syrup production starts by drilling a taphole in the tree. This process injures the wood, which may become discolored or decayed as a result. If trees are to be tapped, every effort must be made to minimize injury while obtaining the desired amount of sap. Information about tapholes is given here for the benefit of the producer. Some important points discussed are: how trees compartmentalize discolored and decayed wood associated with tapholes, how some tapping procedures lead to cambial dieback around the hole, the problem of overtapping related to increased use of mechanical tappers, and new information on the use of para formaldehyde pills, which can lead to more decay in trees.