Showing 1 – 10 of 61 resources

When Tubing is Tapped Out: Recycling Maple Plastics

As the maple industry has grown, so too has the use of plastic sap tubing. Solutions are needed to help producers dispose of tubing when it is past its useful life, in ways that ensure it is not merely ending up in landfills.

Sanitation, Clogging, or Both: A Comparison Study of 3/16″ and 5/16″ Maple Tubing

It is well recognized that microbial contamination of tubing systems can result in a substantial loss in sap yield if untreated. Over a decade of research and maple industry experience has produced a range of possible strategies to address sanitation-related issues in 5/16Ó tubing systems (Perkins et. al. 2019). Although rapidly adopted by many maple producers, due to the relatively short time period in which it has been in widespread use, there is far less understanding of sanitation in 3/16Ó tubing systems (Wilmot 2018). To address this knowledge deficit, we conducted a multi-year study at the UVM Proctor Maple Research Center to examine sanitation-related losses in 3/16Ó tubing systems to determine which approach(es) might best mitigate sap losses due to sanitation.

Comparison of 3/16″ and 5/16″ tubing sanitation

Although rapidly adopted by many maple producers, due to the relatively short time period in which it has been in widespread use, there is far less understanding of sanitation in 3/16Ó tubing systems. To address this knowledge deficit, we conducted a multi-year study at the UVM Proctor Maple Research Center to examine sanitation related losses in 3/16Ó tubing systems to determine which approach(es) might best mitigate sap losses due to sanitation.

A Decade of Spout and Tubing Sanitation Research Summarized

More then a decade ago there was a renewed realization that microbial contamination of maple sap collection systems was having a significant detrimental impact on sap yields. Several research studies to investigate ways to improve sap yields from tubing systems were undertaken at both the University of Vermont Proctor Maple Research Center (Underhill, VT) and at the Cornell University Arnot Forest (Van Etten, NY) starting at about the same time and proceeded both as independent and joint projects from 2009-2018. The results of many of these studies have been reported in the past in numerous individual publications and presentations. This article seeks to combine and present this extensive body of work into a single, comprehensive, but concise summary of our results.

2019 Cornell Maple Program Research on 5/16åÓ Maple Tubing

During the 2019 maple season the Cornell Maple Program conducted replicated trials on 5/16Ó and 3/16Ó tubing looking at a variety of tubing options for taphole sanitation and tapping. This report will focus on the 5/16Ó results.

Beginner Notebook 1st Edition

Manual with chapters on setting up sap collection systems, sugarhouse management, selling maple products, finances, and more.

Tapping Zone Model – Tubing

This model estimates the proportion of clear, conductive wood in the tapping zone of an individual tree each year (for 100 years) based on the values input for tree diameter, tapping depth, spout size, number of taps, and dropline length. This is equivalent to the chances of tapping into conductive wood in this tree each year Ð if 80% of the wood in the tapping zone is conductive, you have an 80% chance of hitting conductive wood when you tap that tree. The model can be used to estimate whether various tapping practices are likely to be sustainable. A more complete description of the model and guidelines for its use can be found in the companion technical report “A Model of the Tapping Zone”, which is available on the UVM-PMRC website (http://www.uvm.edu/~pmrc).