Showing 671 – 680 of all 693 resources in the database

Sap-Sugar Content of Forest Service Grafted Sugar Maple Trees

In March and April 1983, 289 and 196 young grafted sugar maple trees were tapped and evaluated for sap-sugar content. In April, sap was collected from taps both above and below the graft union. Diameter of all tapped trees at 18 inches above the ground was measured. Analysis of the data revealed that: (1) trees selected for high sugar yield cannot be reproduced by grafting on rootstock of unknown but varying sugar content without encountering large fluctuations in sap sweetness of the trees produced; (2) diameter is not correlated with sap sweetness of young grafted trees; (3) numerous sap-sugar readings over time may be necessary to identify the sap sugar characteristics of a candidate sweet tree; and (4) the cause of the variation in sap-sugar content of trees over time needs to be investigated more fully.

Bacterial Adhesion to Plastic Tubing Walls

The advent of plastic tubing systems to collect sap has eliminated several problems associated with the traditional bucket system. However, plastic tubing systems also present some problems of their own. Sap quality problems arise if the lines sag and the sap lingers within the tubings or the large conduits. In addition, the warming effect of the sun increases the tem perature within the tubing to optimum levels for microbial growth and sap flow may decrease because of “organic buildup” on the internal tubing walls. This buildup is a result of the adhesion of microorganisms to the tubing walls.

Compartmentalization: A Conceptual Framework for Understanding how Trees Grow and Defend Themselves

The purpose of this chapter is to describe a conceptual framework for understanding how trees grow and how they and other perennial plants defend themselves. The concept of compartmentalization has developed over many years, a synthesis of ideas from a number of investigators. It is founded on observations of trees injured in the field by wind, snow, ice, fire, animals, and insects, as well as during pruning, coppicing, sugaring, and other forest and orchard management practices. It is based on experimental studies of natural and artificial wounds with and without controlled inoculations with selected pathogenic and saprophytic microorganisms.

Treatment of Sugar Maple Sap with In-Line Ultraviolet Light

We initiated a controlled test of the effect of in-line UV light on the microorganisms in free-flowing sugar maple sap that had not been treated by PFA pellets at the taphole. We also wanted to test the effect of temperature-controlled sap storage for five intervals up to 7 days (167 h) prior to processing to syrup.

Sugarhouse Design

A guide to designing and constructing an efficient sugarhouse.

Sapstreak Disease Of Sugar Maple

Sapstreak is a fatal disease of sugar maple that usually enters the tree through basal trunk scars or root wounds. The disease most often affects large, wounded trees left after logging. The fungus causing sapstreak readily infects stumps or cut logs during the summer months. So, wounding sugar maples during this time will increase the potential for disease spread. In the Lake States, sapstreak has only been found in a few areas of Michigan and at one location in Wisconsin. Although few trees have been killed by sapstreak, it has the potential to become a serious disease in sugar maple stands.

A Cost Analysis: Processing Maple Syrup Products

A cost analysis of processing maple sap to syrup for three fuel types, oil-, wood-, and LP gas-fired evaporators, indicates that: (1) fuel, capital, and labor are the major cost components of processing sap to syrup; (2) woodfired evaporators show a slight cost advantage over oil- and LP gas-fired evaporators; however, as the cost of wood approaches $50 per cord, wood as a fuel would no longer have this cost advantage; (3) economies of scale exist in processing maple sap to syrup; (4) in 1977 the total cost of production, including both sap production costs and processing costs, for a medium-size (750) gallons of syrup) operation was $8.36 per gallon of syrup for oil-fired evaporators, $7.97 per gallon of syrup for wood-fired evaporators, and $8.37 per gallon for LP gas-fired evaporators.

Tapholes in Sugar Maples: What Happens in the Tree

Maple syrup production starts by drilling a taphole in the tree. This process injures the wood, which may become discolored or decayed as a result. If trees are to be tapped, every effort must be made to minimize injury while obtaining the desired amount of sap. Information about tapholes is given here for the benefit of the producer. Some important points discussed are: how trees compartmentalize discolored and decayed wood associated with tapholes, how some tapping procedures lead to cambial dieback around the hole, the problem of overtapping related to increased use of mechanical tappers, and new information on the use of para formaldehyde pills, which can lead to more decay in trees.

Image-analyzing computer in plant science: more and larger vascular rays in sugar maples of high sap and sugar yield

The total area and number of xylem rays and vessels from tangential and cross sections of twigs of 12 sugar maples (Acer saccharum Marsh.) were determined by the use of an image-analyzing computer. A nested analysis of variance indicated that xylem rays of trees of high sap and sugar yield are more numerous and larger than the rays of other sugar maples. The total area and number of xylem vessels were about the same in all 12 trees.