Organic maple defoamer
Presentation about organic maple defoamer research.
Showing 21 – 30 of 76 resources
Presentation about organic maple defoamer research.
Increasing the yield of sap from maple trees is the goal of most maple producers. While getting there isn’t a matter of one simple thing, by
following best management practices and paying attention to detail it is possible to increase sap yields, often quite dramatically. Includes links to videos.
Increasing the yield of sap from maple trees is the goal of most maple producers. While getting there isnÕt a matter of one simple thing, by following best management practices and paying attention to detail it is possible to increase sap yields, often quite dramatically.
The compartmentalization (walling off) process in maple trees and how it affects how to tap for maple syrup production.
The combination of potential crop losses from foam-related incidents, reductions in crop value due to off-flavors, and ultimately the many adverse effects of such a large proportion of organic syrup with off-flavors potentially being sold to consumers, underscore the need to identify or develop a certified organic defoamer for maple production that is both more effective at controlling foam than the culinary oils that are currently used, and which results in no off-flavors when used in the quantities necessary to adequately control foam. Thus, the overall objective of this project was to identify a certified organic defoamer that met these criteria.
Tips on how to achieve higher sap yields.
It is well recognized that microbial contamination of tubing systems can result in a substantial loss in sap yield if untreated. Over a decade of research and maple industry experience has produced a range of possible strategies to address sanitation-related issues in 5/16Ó tubing systems (Perkins et. al. 2019). Although rapidly adopted by many maple producers, due to the relatively short time period in which it has been in widespread use, there is far less understanding of sanitation in 3/16Ó tubing systems (Wilmot 2018). To address this knowledge deficit, we conducted a multi-year study at the UVM Proctor Maple Research Center to examine sanitation-related losses in 3/16Ó tubing systems to determine which approach(es) might best mitigate sap losses due to sanitation.
Although rapidly adopted by many maple producers, due to the relatively short time period in which it has been in widespread use, there is far less understanding of sanitation in 3/16Ó tubing systems. To address this knowledge deficit, we conducted a multi-year study at the UVM Proctor Maple Research Center to examine sanitation related losses in 3/16Ó tubing systems to determine which approach(es) might best mitigate sap losses due to sanitation.
More then a decade ago there was a renewed realization that microbial contamination of maple sap collection systems was having a significant detrimental impact on sap yields. Several research studies to investigate ways to improve sap yields from tubing systems were undertaken at both the University of Vermont Proctor Maple Research Center (Underhill, VT) and at the Cornell University Arnot Forest (Van Etten, NY) starting at about the same time and proceeded both as independent and joint projects from 2009-2018. The results of many of these studies have been reported in the past in numerous individual publications and presentations. This article seeks to combine and present this extensive body of work into a single, comprehensive, but concise summary of our results.
One of the more common questions producers have when about tapping maple trees is Òhow deep should spouts be driven in to the taphole?Ó. Unfortunately, there is not a simple answer, since different spouts have different dimensions, variable degrees of taper and steps, and are made of different materials with dissimilar degrees of Òstickiness.Ó Regardless, the importance of driving spouts in to the proper depth is readily apparent: if spouts are driven too shallow there is a risk that spouts can leak vacuum or heave easily during freezes, but if driven too deeply, small cracks may form which cause liquid and vacuum leaks or alternatively, the reduced amount of exposed wood surface area inside the taphole caused by driving spouts in too deeply may reduce sap collection.