Showing 61 – 70 of 378 resources

Sugarbush Mapping: What’s in your woods? Measuring density

Looking around your woods youÕll see that there are far more trees on the landscape than you have time to measure. The science of forestry has taught us that similar stands (ones that have the same species composition, size classes, productivity, and management history) do not need to undergo a 100% census to get an accurate picture of what is there. Foresters use sampling methods that inventory stands to get an accurate representation of what is in them and the quality of the resource.

Sanitation, Clogging, or Both: A Comparison Study of 3/16″ and 5/16″ Maple Tubing

It is well recognized that microbial contamination of tubing systems can result in a substantial loss in sap yield if untreated. Over a decade of research and maple industry experience has produced a range of possible strategies to address sanitation-related issues in 5/16Ó tubing systems (Perkins et. al. 2019). Although rapidly adopted by many maple producers, due to the relatively short time period in which it has been in widespread use, there is far less understanding of sanitation in 3/16Ó tubing systems (Wilmot 2018). To address this knowledge deficit, we conducted a multi-year study at the UVM Proctor Maple Research Center to examine sanitation-related losses in 3/16Ó tubing systems to determine which approach(es) might best mitigate sap losses due to sanitation.

Comparison of 3/16″ and 5/16″ tubing sanitation

Although rapidly adopted by many maple producers, due to the relatively short time period in which it has been in widespread use, there is far less understanding of sanitation in 3/16Ó tubing systems. To address this knowledge deficit, we conducted a multi-year study at the UVM Proctor Maple Research Center to examine sanitation related losses in 3/16Ó tubing systems to determine which approach(es) might best mitigate sap losses due to sanitation.

The Shifting Sweet Spot of Maple Syrup Production: Climate Change Impacts on Sugar Maple Sap

How may climate change impact the maple syrup industry? Our team of interdisciplinary researchers, ACERnet (Acer Climate and Socio-Ecological Research Network), has been working to understand the complex answers to this question for the past several years. In particular, we are interested in examining how climate impacts the timing of the maple tapping season as well as both the quality and quantity of sap collected during the tapping season.

Sugarbush Mapping: Finding information to assist in forest management and planning in the sugarbush

Technological advances by maple equipment manufacturers, continued outreach and education by local, state, federal, and provincial maple organizations, and widespread adoption of new management practices by producers have revolutionized the maple industry over the last 20 years. The design and layout of sap collection systems and advances in vacuum pumps and releasers has resulted in higher per tap sap yields well beyond the old standards. Increased per tap volume has been matched with modern high brix reverse osmosis systems and efficiency gains in evaporators, pushing the economic potential of making maple syrup to new heights. Value-added products, niche marketing and branding, and social media and online platforms, coupled with health conscious and savvy consumers,have altered the retail sales landscape and linked rural maple producers to consumers around the world.

A Decade of Spout and Tubing Sanitation Research Summarized

More then a decade ago there was a renewed realization that microbial contamination of maple sap collection systems was having a significant detrimental impact on sap yields. Several research studies to investigate ways to improve sap yields from tubing systems were undertaken at both the University of Vermont Proctor Maple Research Center (Underhill, VT) and at the Cornell University Arnot Forest (Van Etten, NY) starting at about the same time and proceeded both as independent and joint projects from 2009-2018. The results of many of these studies have been reported in the past in numerous individual publications and presentations. This article seeks to combine and present this extensive body of work into a single, comprehensive, but concise summary of our results.

2019 Cornell Maple Program Research on 5/16åÓ Maple Tubing

During the 2019 maple season the Cornell Maple Program conducted replicated trials on 5/16Ó and 3/16Ó tubing looking at a variety of tubing options for taphole sanitation and tapping. This report will focus on the 5/16Ó results.

The Goldilocks touch: Overdriving spouts reduces sap yield

One of the more common questions producers have when about tapping maple trees is Òhow deep should spouts be driven in to the taphole?Ó. Unfortunately, there is not a simple answer, since different spouts have different dimensions, variable degrees of taper and steps, and are made of different materials with dissimilar degrees of Òstickiness.Ó Regardless, the importance of driving spouts in to the proper depth is readily apparent: if spouts are driven too shallow there is a risk that spouts can leak vacuum or heave easily during freezes, but if driven too deeply, small cracks may form which cause liquid and vacuum leaks or alternatively, the reduced amount of exposed wood surface area inside the taphole caused by driving spouts in too deeply may reduce sap collection.