Showing 1 – 10 of 11 matching resources

Check-valve spouts vs. standard clear spouts

Leader Evaporator Co. Check-Valve (CV) spouts and adapters incorporate a small, free-floating ball which is designed to reduce or prevent backflow of sap into the taphole during freezing, when leaks in the tubing system occurs, and when mechanical releasers dump and introduce air into the system. Several studies over nearly a decade have compared sap yields from CV adapters and spouts to various non-CV spouts and adapters.

Darkening of Maple Syrup in Uncoated and XL-Coated Plastic Containers

Although several previous studies have examined syrup darkening in different retail containers, packers and producers sometimes question the effectiveness of an oxygen-barrier in reducing the rate of color change. Two studies were performed by the University of Vermont (UVM) Proctor Maple Research Center (PMRC) in 2018 and 2019 to compare the rate of color (LT) change in maple syrup in uncoated and XL-coated retail plastic containers.

Does Color Matter? Spouts come in variety of hues. Does it affect yield?

In general, it is presumed that any effect of Òspout colorÓ on sap yield arises due to thermal warming of darker-colored spouts during sunny periods. Darker-colored spouts warm faster and the spout temperature can rise considerably above air temperature when hit by the sun compared to lighter-colored spouts. To assess the effect of Òspout colorÓ on sap yield, we conducted a multi-year study at the University of Vermont Proctor Maple Research Center in Underhill, Vermont. Twelve treatment plots were randomly assigned a different spout type, with one mainline and releaser for each plot.

Effects of Tapping Depth on Sap Volume, Sap Sugar Content, and Syrup Yield Under High Vacuum

Tapping depth strongly influences both sap yield and wounding. Numerous studies have focused on the amount of sap produced with ifferent depths, the most extensive work conducted by Morrow (1963), who found a tendency for increasing sap yields with increasing taphole depth. However, this work was conducted on gravity with 7/16” tapholes, so is less informative to most producers using 5/16” spouts and vacuum.

High Brix Syrup Processing & First Two Seasons with Lapierre HyperBrix

Given our extensive research experience on RO processing and flavor, and the appearance of new RO technology that could concentrate to higher levels, a shift toward this new technology seemed appropriate. Therefore after investigating various options, we entered into a partnership with Lapierre Equipment to utilize the new HyperBrix RO system at UVM PMRC. This paper describes some aspects of our first two seasons of use of this equipment. Given the state of the industry, we define Òhigh brixÓ maple sap processing as RO machines capable of producing concentrate at 30¡Brix or higher.

Tapholes: Straight or Slanted?

Is there any difference in sap yield when tapping at a slight angle (the historical recommendation) or tapping straight in (the current recommendation)? While there might be other considerations suggesting that tapping straight in is advantageous, from a syrup yield perspective, there is no apparent difference.

The Goldilocks touch: Overdriving spouts reduces sap yield

One of the more common questions producers have when about tapping maple trees is Òhow deep should spouts be driven in to the taphole?Ó. Unfortunately, there is not a simple answer, since different spouts have different dimensions, variable degrees of taper and steps, and are made of different materials with dissimilar degrees of Òstickiness.Ó Regardless, the importance of driving spouts in to the proper depth is readily apparent: if spouts are driven too shallow there is a risk that spouts can leak vacuum or heave easily during freezes, but if driven too deeply, small cracks may form which cause liquid and vacuum leaks or alternatively, the reduced amount of exposed wood surface area inside the taphole caused by driving spouts in too deeply may reduce sap collection.