Showing 21 – 30 of 136 matching resources

Check-valve spouts vs. standard clear spouts

Leader Evaporator Co. Check-Valve (CV) spouts and adapters incorporate a small, free-floating ball which is designed to reduce or prevent backflow of sap into the taphole during freezing, when leaks in the tubing system occurs, and when mechanical releasers dump and introduce air into the system. Several studies over nearly a decade have compared sap yields from CV adapters and spouts to various non-CV spouts and adapters.

Chemical composition of five standard grades of pure maple syrup

The objective of this study was to characterize the chemical composition of the five maple syrup grades, including their pH, conductivity, mineral and carbohydrate contents. In general, quantification of the range of chemical composition for each standard maple syrup grade will strengthen the existing knowledge of maple syrup chemistry.

Chemical Composition of Scale in Maple Syrup Evaporators

The goal of this work was to investigate the chemical composition of the scale that is deposited on maple evaporator surfaces during sap processing. Knowing the chemical composition of scale produced in modern equipment and how it compares to previously published values for loose sugar sand may aid in understanding how best to remove these unwanted deposits.

Chemical Safety in Maple Sugaring Operations

This brochure is intended to raise awareness among sugarmakers about hazardous chemicals commonly being used in sugaring operations as well as the need to use these materials safely, in a way which protects personal and food product safety. This brochure will outline 1) the most common types of chemical hazards associated with sugarhouse chemicals, 2) basic guidelines for using chemicals safely, and 3) where to get more detailed information.

Climate Change & Maple

Dr. Tim Perkins (Director-University of Vermont Proctor Maple Research Center) discusses the intimate relationship between weather and maple sap flow, changing climatic conditions have the potential to affect the maple industry in a variety of ways. This presentation describes research that has been conducted on climate change and maple as well as new ongoing work, and describe some possible effects of changing climate on the future of the industry in the northeast.

Cloudiness’ effect on refractometer measurements

Accurately measuring density is critical to the production of pure maple syrup. This article explores how impurities in syrup can affect the accuracy of tools used to measure density.

Comparison of 3/16″ and 5/16″ tubing sanitation

Although rapidly adopted by many maple producers, due to the relatively short time period in which it has been in widespread use, there is far less understanding of sanitation in 3/16Ó tubing systems. To address this knowledge deficit, we conducted a multi-year study at the UVM Proctor Maple Research Center to examine sanitation related losses in 3/16Ó tubing systems to determine which approach(es) might best mitigate sap losses due to sanitation.

Comparison of Digital Refractometers for Use by Maple Producers

The purpose of the present experiment was to test the precision of a variety of digital refractometers available to maple producers. Additionally, the effect of temperature on refractometer accuracy and precision was investigated, in order to assess the reliability of the automatic temperature compensation feature now present in the majority of refractometers.

Comparison of the “Small” Spout with the Traditional 7/16″ Spout

The “small” spout, 19/64″ or 5/16″ in diameter, has been widely available to maple producers since the mid to late 1990’s as a “healthy” alternative to the traditional 7/16″ spout. While now in general use by producers in some regions, particularly those collecting sap by vacuum, the utility of these smaller spouts is still questioned by many sugarmakers, particularly those collecting sap by gravity. This article will review several studies conducted at the University of Vermont Proctor Maple Research Center comparing 7/16″ spouts with small spouts (for the purposes of this article, 5/16″, and 19/64″ will be considered equally as “small” spouts).

Composition and Properties of Maple Sap, Concentrate, and Permeate

Reverse osmosis is used widely in the maple syrup industry to concentrate maple sap and increase the overall efficiency and profitability of syrup pro-duction. Sets of samples from maple producers utilizing a range of sap con-centration levels were collected and analyzed to provide a portrait of the phy-sicochemical properties and chemical composition of maple sap, concentrate, and permeate across a single production season. The results reinforce that re-verse osmosis functions essentially as a concentration process, without signifi-cantly altering the fundamental proportions of sap constituents.