Showing 71 – 80 of 358 matching resources

Calculating costs for a maple tubing system

An important part of beginning or improving the tubing system in a maple enterprise is to have a good estimate of just how much the project will cost. Though there are many variables in installing a new or replacing an old system the cost of materials is predictable. Two factors allow you to make a reasonable estimate of what a sap collection system will cost in materials. The first is the number of taps per acre. The second is the density of trees.

Carbohydrate reserves in Acer saccharum trees damaged during the January 1998 ice storm in northern New York

To assess the effect of the ice storm of January 1998 on sugar maple (Acer sacchan~m Marsh.) tree health, starch, and soluble sugars in twigs from two damaged sugarbushes (younger: trees 50-100 years old, and older: trees approximately 200 years old) in northern New York were measured throughout the leafless phase (September 1998 – May 1999). Trees severely damaged by the ice storm exhibited signs of recovery during the first growth season (1998), that is, greater numbers of lateral (epicormic) shoots and increased wood production in the current year growth ring of branches at mid-crown, and high concentrations of starch in the twigs at the time of leaf drop.

Characterization and Removal of Buddy Off-Flavor in Maple Syrup

Buddy maple syrup is characterized by an unpleasant cabbage?like flavor occurring generally toward the end of the sap harvest season. Occurrence of buddy off?flavor leads to a decrease in syrup value and economic loss for the industry. It is therefore relevant to characterize the off?flavor in order to apply corrective treatments. HS?SPME combined with GC/MS was applied to analyze volatile aroma compounds in buddy maple syrup samples. Two novel volatile sulfur compounds were found in maple syrup: dimethyl disulfide (DMDS) and dimethyl trisulfide. A 3?alternative forced choice in ascending concentration of different buddy syrups diluted in good quality syrup was conducted in triplicate to assess buddy syrup concentration thresholds leading to detection and recognition of the off?flavor by 16 panelists while monitoring volatile aroma compounds in diluted samples. Results showed that DMDS was associated with the flavor defect. The recognition threshold concentration of buddy syrup varies depending on the syrup sample and the off?flavor can be detected in syrups containing very low DMDS content. Application of a continuous heat treatment on buddy syrups for 2 hr at 104.5 ¡C led to a removal of the buddy off?flavor as well as a significant reduction in DMDS content.

Check-valve spouts vs. standard clear spouts

Leader Evaporator Co. Check-Valve (CV) spouts and adapters incorporate a small, free-floating ball which is designed to reduce or prevent backflow of sap into the taphole during freezing, when leaks in the tubing system occurs, and when mechanical releasers dump and introduce air into the system. Several studies over nearly a decade have compared sap yields from CV adapters and spouts to various non-CV spouts and adapters.

Chemical and microbial characterization of ropy maple sap and syrup

Ropiness of maple syrup is a phenomenon that can occur several times in the season. The alteration known as ÒropinessÓ is characterized by a viscous, thick, slimy/jelly-like texture which, although not noticeably altering the taste, renders the product unpleasant in terms of mouthfeel. The aim of this study was to estimate the economic impact of production of ropy maple syrup in the region of Quebec, to more deeply identify and characterize bacteria associated to this type of quality defect, and to study the composition of Polysaccharides found in stringy maple syrup.

Chemical composition and properties of maple sap treated with an ultra high membrane concentration process

Nanofiltration and Reverse Osmosis are membrane concentration processes originally used by maple syrup producers to preconcentrate the sap to a moderate °Brix level (8–16 °Brix). The purpose of this study is to evaluate the potential of new membrane technology to concentrate maple sap to ultra-high °Brix and to investigate the effect of this concentration on the chemical composition and physical properties of final sap concentrate. Maple sap was concentrated up to 42 °Brix using two industrial membrane units. The contents of main solutes increased with the °Brix of concentrates depending on the specific rejection rate of the membranes tested. A slight and significant decrease was observed in the availability of some solutes such as K+, Mn++ and polyphenols in ultra-high-concentrated sap. However, the apparent organoleptic and physical properties of these concentrates have not been altered. According to the results of this, the new membrane process allows to produce ultra-high °Brix concentrate of maple sap with interesting properties. However, further works have to be performed on this technology to more precisely determine the highest °Brix level that will minimise the affect on chemical composition and properties of concentrated sap and the corresponding maple syrup.

Chemical composition of five standard grades of pure maple syrup

The objective of this study was to characterize the chemical composition of the five maple syrup grades, including their pH, conductivity, mineral and carbohydrate contents. In general, quantification of the range of chemical composition for each standard maple syrup grade will strengthen the existing knowledge of maple syrup chemistry.

Chemical Composition of Scale in Maple Syrup Evaporators

The goal of this work was to investigate the chemical composition of the scale that is deposited on maple evaporator surfaces during sap processing. Knowing the chemical composition of scale produced in modern equipment and how it compares to previously published values for loose sugar sand may aid in understanding how best to remove these unwanted deposits.