Showing 41 – 50 of 107 resources

Asian Longhorned Beetle (Coleoptera: Cerambycidae), an Introduced Pest of Maple and Other Hardwood Trees in North America and Europe

The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), threatens urban and forest hardwood trees both where introduced and in parts of its native range. Native to Asia, this beetle has hitchhiked several times in infested wood packaging used in international trade, and has established breeding populations in five U.S. states, Canada, and at least 11 countries in Europe. It has a broad host range for a cerambycid that attacks living trees, but in the introduced ranges it prefers maples. Identification, classification, and life history of this insect are reviewed here. Eradication is the goal where it has been introduced, which requires detection of infested trees using several approaches, including ground and tree-climbing surveys. Several agencies and researchers in the United States and Europe are evaluating the use of pheromone- and kairomone-baited traps. Control options beyond cutting down infested trees are limited.

Evaluation of Sugar Maple Dieback Trends in the Upper Great Lakes Region

Crown dieback and declines in tree health of sugar maple (Acer saccharum) have been reported on various land ownerships in the western Upper Great Lakes region in recent years (MDNR 2009, 2010, 2012). In some areas, the crown dieback has affected high-value crop trees. Historically, sugar maple dieback (fig. 10.1) has been reported more frequently in the eastern part of its range and has not been described on the same scale in the Great Lakes region since the 1950s and 1960s (Bal and others 2015, Millers and others 1989). As a result, fewer studies of canopy health of sugar maple exist in the Midwest than in the Eastern United States.

Maintaining a Healthy Sugarbush

Knowing how to properly maintain your sugar bush — a maple producer’s most valuable resource — is a critical skill.

Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics

Acid deposition induced losses of calcium (Ca) from northeastern forests have had negative effects on forest health for decades, including the mobilization of potentially phytotoxic aluminum (Al) from soils. To evaluate the impact of changes in Ca and Al availability on sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) growth and forest composition following a major ice storm in 1998, we measured xylem annual increment, foliar cation concentrations, American beech root sprouting, and tree mortality at the Hubbard Brook Experimental Forest (Thornton, New Hampshire) in control plots and in plots amended with Ca or Al (treated plots) beginning in 1995.

Does sugar removal impact trees? A complex question to answer.

Two main issues relate to the sustainability of maple sugaring; tree wounding and sugar removal. In other words, does a tapped maple tree grow more wood than is compartmentalized (functionally “removed by the tree’s normal wound response process) each year and/or does sap collection take more sugar from the tree than can be readily replaced through photosynthesis? These two issues, although separate in some respects, are inextricably intertwined.

Sap Now or Sawlogs Later

Tapping trees has an impact on the value of those trees’ logs for lumber.

Population dynamics of sugar maple through the southern portion of its range: implications for range migration

The range of sugar maple (Acer saccharum Marsh.) is expected to shift northward in accord with changing climate. However, a pattern of increased sugar maple abundance has been reported from sites throughout the eastern US. The goal of our study was to examine the stability of the sugar maple southern range boundary by analyzing its demography through the southern extent of its distribution. We analyzed changes in sugar maple basal area, relative frequency, relative density, relative importance values, diameter distributions, and the ratio of sapling biomass to total sugar maple biomass at three spatial positions near the southern boundary of the speciesÕ range using forest inventory data from the USDA Forest Service Forest Inventory and Analysis program over a 20 year observation period (1990Ð2010).

Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest

Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature sugar maple physiology were evaluated at the Hubbard Brook Experimental Forest (Thornton, NH, USA) to assess remediation (Ca addition) or exacerbation (Al addition) of current acidified conditions. Fine root cation concentrations and membrane integrity, carbon (C) allocation, foliar cation concentrations and antioxidant activity, foliar response to a spring freezing event and reproductive ability (flowering, seed quantity, filled seed and seed germination) were evaluated for dominant sugar maple trees in a replicated plot study.

Effects of Acidic Deposition and Soil Acidification on Sugar Maple Trees in the Adirondack Mountains, New York

High levels of atmospheric sulfur (S) and nitrogen (N) deposition have substantially damaged ecosystems in the Adirondack Mountains of New York. Efforts to quantify damage have largely focused on aquatic effects2 However, limited recovery of surface water acid?base chemistry in response to large (>40%) decreases in S deposition over the past two to three decades has been attributed to depletion of soil calcium (Ca) and other base cations that may be ongoing despite declining acidic deposition. Availability of soil Ca has also been linked to changes in terrestrial faunal and vegetation communities in Adirondack hardwood forests.