Showing 11 – 20 of 268 resources

Expert Tubing Tips for Maple

At Leader’s Spring Open House, three top experts in tubing and woods management – Glen Goodrich, Mark Erlsten, and Jon Rybkiewicz – sat down for a little over an hour and shared loads of invaluable information on all aspects of installing tubing, tapping trees, and best woods practices.

North American Maple Syrup Producers Manual, 3rd Ed.

Since 1958 the North American Maple Syrup Producers Manual has served as a basic reference source for the production of pure maple products. This 2022 edition provides up-to-date, science-based information and recommendations relating to all aspects of the industry. The guidelines presented will help users ranging from the hobby and beginning producer level to those well-established in the industry. In addition, the information herein will benefit foresters, land managers, Extension and outreach personnel, and others aiming to provide assistance to those in the maple industry. Numerous photographs, tables, a glossary and hyperlinks to selected source materials are included.

This publication is also available in print, at www.mapleresearch.org/ordermanual.

Exudation Pressure in Maple Trees: Comparing Simulations with Experiments

Exudation is the process whereby trees can generate a large positive pressure in stems or roots during months when the tree is leafless and mostly dormant and temperatures fluctuate above and below freezing. This article aims to provide an update on recent modelling efforts
in combination with experimental measurements from red/sugar maple trees at the University of Vermont Proctor Maple Research Center that validate the model results.

Reduced Sap Yields When Tapping Into Non- Conductive Wood

According to a recent survey of more than 300 maple producers in the northeast United States, nonconductive wood was hit during tapping on average 4.5% of the time and the responses ranged from 0-41% of the time (UVM Extension 2019 unpublished). Previous research has explored factors that impact the likelihood of tapping into NCW. Significant factors include but are not limited to; dropline length, taphole diameter, tapping intensity (number of taps/tree) and stem growth (van den Berg and Perkins 2014). Other work touched on the relationship between the amount of conductive wood exposed while tapping and yields (Wilmot et al. 2007). But to date, there has been no direct investigation as to the relationship between the percent of NCW is intercepted while tapping and sap yield. The present study sought to understand the relationship between the amount of NCW in a given tap how and the amount of sap collected, as well as understanding if other factors (sap sweetness) might impact total yields between treatments.

Maximizing production through sustainable tapping

Optimal syrup production starts at the tree, and requires thinking beyond the current season. This session focuses on tapping practices that both maximize yield and ensure long-term sustainability of your sugarbush. Topics include timing of tapping, taphole placement, taphole sanitation, and sap collection.

Identifying Maples for Maple Syrup Making

This is a basic guide to identifying three maple species during the growing and dormant seasons. We look at key identifying characteristics such as branching patterns, leaf shapes and bark patterns. Additionally, we include identifying characteristics of two other trees that could cause confusion in the sugar bush.

Sweet Talk: All Things Maple

The Cornell Maple Program presents Sweet Talk, with hosts, co-directors of CMP, Aaron Wightman and Adam Wild. Your hosts will present the latest research, news, and trends in the maple industry, with various guests including other maple researchers, industry experts, and local sugarmakers.

Yields from Early Tapping and Taphole “Rejuvenation” Strategies

Because the impacts on yields of early tapping strategies, with or without subsequent rejuvenation, are likely to be affected by weather conditions which can vary widely from year to year, controlled experiments over multiple years are required in order to more fully assess whether any of these strategies result in greater yields than tapholes made during the standard spring sap flow period, or whether any increases in yield would be sufficient to compensate for the increased costs associated with implementing them. Thus, we conducted a multi-year, controlled experiment to assess the yields of several early tapping strategies, with and without subsequent rejuvenation, relative to the yields of standard spring tapholes.

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Download resource [2.43 MB]