Showing 11 – 20 of 21 resources

3/16 inch Tubing with Check Valves Trial

In a normal sap flow event, trees exude sap during the above freezing period and replenish that lost water by ÒsuckingÓ it up from the roots during the below freezing period. If on a tubing system, during this negative pressure period they tend to draw sap back into the tree from the dropline. Sap, once it enters the droplines, is quickly contaminated with microbes. When they are drawn back into the tree, tap hole closure is initiated. The problem is compounded in 3/16- inch tubing because, unlike 5/16-inch tubing, the smaller diameter collection tube remains full of sap. A Cornell study found that up to 12 feet of sap in a 3/16-inch tube can be drawn back into the tree during this recharge time. CV spouts are one proven method of limiting this drawback with 5/16 inch tubing. The question was: will they also be effective with 3/16-inch tubing that is full of sap?

The Forests of Southern New England, 2012

This report summarizes the U.S. Forest Service, Forest Inventory and Analysis (FIA) forest inventory data, collected from 2008 to 2012, for Southern New England, defined as Connecticut, Massachusetts, and Rhode Island. In addition to providing regional and state-level summaries, the reports highlights three focus plots, one average or prototypical plot from each State, as a means to better tell the story of the forests of the region. Forests cover an estimated 5,128,000 acres or 59 percent of Southern New EnglandÑ1,736,000 acres in Connecticut (56 percent of the State), 3,028,000 acres in Massachusetts (61 percent), and 364,000 acres in Rhode Island (55 percent). There was no substantial change in the area of forest land between the current, 2012, and the previous, 2007, FIA inventories.

New York Forests 2012

This report summarizes the second annual inventory of New YorkÕs forests, conducted in 2008-2012. New YorkÕs forests cover 19.0 million acres; 15.9 million acres are classified as timberland and 3.1 million acres as reserved and other forest land. Forest land is dominated by the maple/beech/birch forest-type group that occupies more than half of the forest land. The sound wood volume on timberland has been rising and is currently 37.4 billion cubic feet, enough to produce saw logs equivalent to 93.7 billion board feet.

The Economic Contribution of the Vermont Maple Industry

Maple and the maple industry are synonymous with Vermont with its sugar houses and mountain sides with colorful leaves in the fall. The maple industry, beyond producing maple products, contribute to the image of Vermont and to its tourism. This report focuses on the economic contribution of the maple production supply chain from equipment manufacturing, equipment sales, installation to sugaring, packing and production of maple products. Though putting a dollar amount on the contribution of the maple industry to tourism in Vermont would be a complex task, and beyond the scope of this report, the contribution is likely very significant.

Forests of Vermont and New Hampshire 2012

The first full remeasurement of the annual inventory of the forests of Vermont and New Hampshire was completed in 2012 and covers nearly 9.5 million acres of forest land, with an average volume of nearly 2,300 cubic feet per acre. The data in this report are based on visits to 1,100 plots located across Vermont and 1,091 plots located across New Hampshire. Forest land is dominated by the maple/beech/birch forest-type group, which occupies 60 percent of total forest land area.

The Economics of Maple Syrup Production in Ontario

There is ample room to grow the maple market in Ontario. OMSPA commissioned this report and the accompanying budgeting tool to assist maple entrepreneurs in building a solid BUSINESS PLAN to tap into this incredible business opportunity. The accompanying Excel budgeting tool facilitates the exploration of various scenarios of yield, scale, and capital investment to measure the impact on the bottom line profitability.

Cost of Maple Sap Production for Various Size Tubing Operations

Reports sap production costs for small (500 to 1,000 taps), medium (1,000 to 5,000), and large (5,000 to 15,000) maple syrup operations that use plastic tubing with vacuum pumping. The average annual operating cost per tap ranged from $4.64 for a 500-tap sugarbush operation to $1.84 for a sugarbush with 10,000 taps. The weighted average was $2.87 per tap or $11.48 per gallon (assumes four taps required to produce a gallon of syrup). The average annual investment cost for a plastic tubing system ranged from $7.90 for a 500-tap operation to $6.03 for a 10,000-tap system. The average labor time per tap was 4.74 minutes in 1998 compared to 9.60 minutes in 1975. The break-even (zero profit) size for a sugarbush operation was 900, 1,500, and 3,800 taps for a 3.0, 2.5, and 2.0o Brix sap, respectively.

Sugar Maple Ecology and Health: Proceedings of an International Symposium

During the past four decades, declines of sugar maple have occurred throughout its range. Each decline event has been the subject of intense research.The declines were ephemeral, preventing a complete understanding of conditions and causes.The most recent decline in Pennsylvania was the impetus to organize an international symposium on sugar maple ecology and health. Speakers from the United States and Canada were invited to share their research and explore a variety of topics concerning sugar maple history and ecology, recent sugar maple declines, nutrient and beiowground dynamics in northeastern forests, and interactions of forest health with biotic and abiotic stressors. Posters also were contributed. Attending scientists, natural resource professionals, and land managers participated in two days of talks and discussions and a day-long field trip to sugar maple decline research sites in northwestern Pennsylvania and southwestern New York.

Sugarmaker’s Guide to Pear Thrips Monitoring

Pear thrips surfaced as a new pest of sugar maple, Acer saccharum Marsh., in 1979. Damage from this insect occurs intermittently, and threatens the long-term health of maple trees throughout the northeastern United States and parts of Canada. A method for sampling forest soil to determine pear thrips populations is described that is suitable for sugarmakers. This method requires a minimum of equipment and time, and provides sugarmakers with a reliable estimate of the number of thrips in their sugar_bushes. By sampling and assessing damage annually, sugarmakers will gain an understanding of the relationship between thrips population levels and damage in their stands. Based on this information, potential damage in the spring can be estimated. Sample results are obtained before tapping so sugarmakers can adjust their management practices, such as the number of taps per tree, to minimize stress on trees when damage is likely.