Showing 351 – 360 of 361 resources

Plastic Tubing and Maple Syrup Quality

Maple syrup made from sap collected using improperly or carelessly installed plastic pipelines varied more in color from day to day, and was more often darker in color, than sap collected from either the property installed pipeline or clean, frequently emptied galvanized buckets. Use of both properly installed tubing and buckets, following recommended procedures, produced light colored syrup of equal quality throughout the entire maple syrup season.

Sap Preheaters: Efficient Maple Syrup Processing

In 1974 the Vermont Experiment Station, Proctor Maple research team, and the Northeastern Forest Experiment Economics Research Unit at Burlington, VT, launched an intensive 4-year processing research program. This program was designed to accomplish two major goals: (1) increase the efficiency of the conventional open-pan evaporator system from approximately 65 percent to approximately 80 percent; and (2) evaluate new evaporator systems for processing maple syrup products. As an initial part of the first research objective, the energy balance of the conventional open-pan evaporator has been completed. Also, design and laboratory and field testing of a sap preheater system has been completed.

Image-analyzing computer in plant science: more and larger vascular rays in sugar maples of high sap and sugar yield

The total area and number of xylem rays and vessels from tangential and cross sections of twigs of 12 sugar maples (Acer saccharum Marsh.) were determined by the use of an image-analyzing computer. A nested analysis of variance indicated that xylem rays of trees of high sap and sugar yield are more numerous and larger than the rays of other sugar maples. The total area and number of xylem vessels were about the same in all 12 trees.

Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis

A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water: (2) vapor compression evaporation produced a syrup equal in quality to that from a conventional open-pan evaporation plant; and (3) a central plant producing 8,000 gallons of syrup per year should yield a return of 16 percent on investment. Increasing annual product output should increase the return on investment.

Increasing the Efficiency of Maple Sap Evaporators with Heat Exchangers

A study of the engineering and economic effects of heat exchangers in conventional maple syrup evaporators indicated that: (1) Efficiency was increased by 15 to 17 percent with heat exchangers; (2) Syrup produced in evaporators with heat exchangers was similar to syrup produced in conventiona lsystems in flavor and in chemical and physical composition; and (3) Heat exchangers reduce per unit production costs, and can yield greater production and higher profits.

Analysis of Pure Maple Syrup Consumers

Virtually all of the pure maple syrup production in the United States is in the northern states of Maine, Masachusetts, Michigan, New Hampshire, New York, Ohio, Pennsylvania, Vermont, and Wisconsin. Pure maple syrup users living in the maple production area and users living in other areas of the United States were asked a series of questions about their use of pure maple syrup and their responses were compared. User attitudes toward the product, syrup-use patterns, syrup-packaging characteristics, and syrup-purchasing patterns are identified and discussed.

Effects of Moisture and Fertilizers on Sugar Maple Seedling Growth

Two ways to help satisfy the need for more high-quality sugar maple trees (Acer saccharum Marsh.) are by establishing plantations and by supplementing natural regeneration. To gain basic knowledge of seedling requirements for this species we studied the effects of soil moisture and nutrient levels on the growth of sugar maple seedlings in their first 3 years.

Maturation of Sugar Maple Seed

The seeds of a sugar maple tree do not mature at the same time every year, and different trees mature their seeds and different times So time of year is not a reliable measure of when seeds are ripe. In recent studies we have found that moisture content and color are the best criteria for judging when sugar maple seeds are ripe.

Sap Yields from Fall and Spring Tapping of Sugar Maple

Some maple sap producers have wondered whether they could increase the total sap yields by tapping their trees not only in the sprint but also in the fall too. Our research indicates that tapping in the fall cannot be recommended.

A Correlation Between Sugar Concentration and Volume Yields In Sugar Maple An 18- Year Study

The sugar concentrations and the volume yields of Acer saccharum Marsh. sap from trees with single tapholes both show large variations from year to year and during sap flow seasons. Daily measurements of sugar concentration and volume yield from 29 trees for 18 years show consistent patterns. High sugar concentrations and high volume yields are characteristic of some trees; lower sugar concentrations and smaller volume yields are characteristic of other trees. A regression analysis shows a highly significant relationship between sugar concentration and volume yield in individual trees.