Showing 1 – 10 of 36 resources

A Mathematical Model for Maple Sap Exudation

Sap exudation refers to the process whereby sugar maple trees (Acer saccharum) are capable of generating significant stem pressure in a leafless state, something that occurs to a lesser extent in only a few other related species such as birch and walnut. This exudation pressure is what causes maple sap to flow from a taphole in sufficient quantities to be harvested and processed into syrup. Exudation has been studied for well over 100 years and has been the subject of many scientific studies, but there is as yet no definitive explanation for how such large pressures can be generated in the absence of transpiration (i.e., when no photosynthesis occurs to drive the flow of sap).

Producing Syrup from Black Walnut Trees in the Eastern United States

Though it is not well known, all species of walnut (Juglans spp.) produce a sweet sap that can be boiled down into valuable syrup. There is a well-established resource of black walnut (Juglans nigra) trees throughout eastern North America that could be utilized for syrup production to complement existing sugaring operations.

The 3/16 phenomenon

Using smaller-diameter tubing can create a natural vacuum which can increase sap production. This article details some research into this method of sap collection, and offers tips on some practical applications.

Maintaining a Healthy Sugarbush

Knowing how to properly maintain your sugar bush — a maple producer’s most valuable resource — is a critical skill.

Cleaning Tubing Systems

There are a number of ways to clean tubing systems to avoid microbial contamination of tapholes and sap.

Differential impacts of calcium and aluminum treatments on sugar maple and American beech growth dynamics

Acid deposition induced losses of calcium (Ca) from northeastern forests have had negative effects on forest health for decades, including the mobilization of potentially phytotoxic aluminum (Al) from soils. To evaluate the impact of changes in Ca and Al availability on sugar maple (Acer saccharum Marsh.) and American beech (Fagus grandifolia Ehrh.) growth and forest composition following a major ice storm in 1998, we measured xylem annual increment, foliar cation concentrations, American beech root sprouting, and tree mortality at the Hubbard Brook Experimental Forest (Thornton, New Hampshire) in control plots and in plots amended with Ca or Al (treated plots) beginning in 1995.

Sap Now or Sawlogs Later

Tapping trees has an impact on the value of those trees’ logs for lumber.

Does sugar removal impact trees? A complex question to answer.

Two main issues relate to the sustainability of maple sugaring; tree wounding and sugar removal. In other words, does a tapped maple tree grow more wood than is compartmentalized (functionally “removed by the tree’s normal wound response process) each year and/or does sap collection take more sugar from the tree than can be readily replaced through photosynthesis? These two issues, although separate in some respects, are inextricably intertwined.